Isomap nonlinear dimensionality reduction and bimodality of Asian monsoon convection
نویسندگان
چکیده
[1] It is known that the empirical orthogonal function method is unable to detect possible nonlinear structure in climate data. Here, isometric feature mapping (Isomap), as a tool for nonlinear dimensionality reduction, is applied to 1958–2001 ERA-40 sea-level pressure anomalies to study nonlinearity of the Asian summer monsoon intraseasonal variability. Using the leading two Isomap time series, the probability density function is shown to be bimodal. A two-dimensional bivariate Gaussian mixture model is then applied to identify the monsoon phases, the obtained regimes representing enhanced and suppressed phases, respectively. The relationship with the large-scale seasonal mean monsoon indicates that the frequency of monsoon regime occurrence is significantly perturbed in agreement with conceptual ideas, with preference for enhanced convection on intraseasonal time scales during large-scale strong monsoons. Trend analysis suggests a shift in concentration of monsoon convection, with less emphasis on South Asia and more on the East China Sea. Citation: Hannachi, A., and A. G. Turner (2013), Isomap nonlinear dimensionality reduction and bimodality of Asian monsoon convection, Geophys. Res. Lett., 40, doi:10.1002/grl.50351.
منابع مشابه
Global Versus Local Methods in Nonlinear Dimensionality Reduction
Recently proposed algorithms for nonlinear dimensionality reduction fall broadly into two categories which have different advantages and disadvantages: global (Isomap [1]), and local (Locally Linear Embedding [2], Laplacian Eigenmaps [3]). We present two variants of Isomap which combine the advantages of the global approach with what have previously been exclusive advantages of local methods: c...
متن کاملLinear versus nonlinear dimensionality reduction for banks' credit rating prediction
Dimensionality reduction methods have shown their usefulness for both supervised and unsupervised tasks in a wide range of application domains. Several linear and nonlinear approaches have been proposed in order to derive meaningful low-dimensional representations of high-dimensional data. Among nonlinear algorithms manifold learning methods, such as isometric feature mapping (Isomap), have rec...
متن کاملENSO dynamics in current climate models: an investigation using nonlinear dimensionality reduction
Linear dimensionality reduction techniques, notably principal component analysis, are widely used in climate data analysis as a means to aid in the interpretation of datasets of high dimensionality. These linear methods may not be appropriate for the analysis of data arising from nonlinear processes occurring in the climate system. Numerous techniques for nonlinear dimensionality reduction have...
متن کاملIsometric Embedding and Continuum ISOMAP
Recently, the Isomap algorithm has been proposed for learning a nonlinear manifold from a set of unorganized high-dimensional data points. It is based on extending the classical multidimensional scaling method for dimension reduction. In this paper, we present a continuous version of Isomap which we call continuum isomap and show that manifold learning in the continuous framework is reduced to ...
متن کامل